Hola jóvenes, necesito que Ustedes mismos me ayuden a hacer el texto del examen parcial. Por favor escriban problemas que Ustedes les gustaría ver en su examen.
Escriban el texto y su solución. Espero que participen todos. Todo tipo de sugerencias e inquietudes las consideraré.
Quiero ver sus imaginaciones. cerebro.gif. De lo que Ustedes alimenten esta página saldrá gran parte del 1er Examen Parcial, también de la página de Problemas Propuestos, lo mismo que de los talleres en las páginas de los Talleres.

Habrá puntos para todos los que participen y puntos dobles para los autores de los problemas escogidos para el examen.


caution.gif

POR FAVOR NO SE PONGAN A EDITAR INNECESARIAMENTE, SOLO ESTAN CAUSANDO DIFICULTADES.

PARA SU SEGURIDAD ESTA PAGINA ESTA BLOQUEADA Y NO SE PUEDE ADICIONAR MAS INFORMACIÓN.

LOS QUE DESEEN APORTAR MAS ENTREN SUS PROPUESTAS EN LA PAGINA 1er Examen Parcial II.



LOS QUE DESEEN APLAZAR EL EXAMEN PUEDEN VOTAR LA ENCUESTA.

Problema No 1 (Ley de Coulomb)

Tres cargas puntuales se colocan en las esquinas de un triangulo equilátero, como se muestra en la figura. Calcule la fuerza neta sobre la carga de 7µC.



Solución
Para la carga de 7 µC el diagrama de fuerza será


Por medio de la Ley de Coulomb averiguamos la fuerza F1,2

dibujo_4.jpg
De la misma manera averiguamos la fuerza F1,3 que es igual a 1.01 N
Como las fuerzas están tanto en dirección x como en dirección y, sacamos las componentes en cada direccion:
dibujjo_6.jpg
(Se observa que la componente en y de la fuerza F1,3 es negativa pues en el diagrama de fuerzas de la carga esta hacia abajo del sistema de coordenadas)
Luego hallamos el modulo de la fuerza.

G11NL41daniel

( compañero daniel si el enunciado dice que el triangulo es equilatero sus angulos internos deberian ser de 60 por tanto al dividir este en dos quedaria en 30, o estoy interpretando mal el problema......por favor aclararnos, muchas gracias. pd: de donde sale el valor de q2.)
G12NL6nathaliacontreras y G12NL16diegomartinez


Problema No 2
Describa verbal e intuitivamente cada una de las ecuaciones de Maxwell.

Solución
Ley de Gauss para campo eléctrico:
El flujo de campo eléctrico a través de una superficie cerrada es proporcional a la carga interna.

Ley de Gauss para campo magnético:
El flujo de campo magnetico neto a través de una superficie cerrada siempre es 0.

Ley de Faraday:
Un flujo de campo magnético variando con el tiempo produce un campo eléctrico.

Ley de Ampere:
Una corriente eléctrica y/o un campo eléctrico variando con el tiempo producen un campo magnético.

G10NL26Alexis

Muy bien Alexis, ahora alguno que profundice un poco más y exprese las leyes en sus formas integral y diferencial, JVV
1. Ley de Gauss para campo eléctrico:
Forma integral
Forma integral
;
Forma diferencial
Forma diferencial
2. Ley de Gauss para campo magnético:
Forma integral
Forma integral
;
Forma diferencial
Forma diferencial
3. ley de Faraday:
Forma integral
Forma integral
;
Forma diferencial
Forma diferencial
4. ley de ampere:
Forma integral
Forma integral
;
Forma diferencial
Forma diferencial
external image 4ac9a414b10352816fabded8409cbc4d.png es la densidad de corriente que atraviesa el conductor.G9NL17Jeisson


Problema No 3

Cuatro cargas de 8µC, -11µC, -90µC y 80µC se encuentran dentro de un avión, calcule en flujo eléctrico neto a través del avión.

Solución

Q1= 8 * 10^-6 C

Q2= -11* 10^-6 C

Q3= -90* 10^-6 C

Q4=80* 10^-6 C

Qint= Q1 + Q2 +Q3 + Q4 = -1.3 * 10^-5C

ε0= 8.85* 10^-12 C

Φ=Qint/ ε0 =-1.47 10^6

G10NL10FELIPE


Compañero felipe me gustaria saber de donde proviene el siguiente valor ε0= 8.85* 10^-12 C ,muchas gracias

G12NL16diegomartinez y G12NL6nathalicontreras
RTA:
ε0 es la constante de permitividad en el vacio, es un valor que hay que saberse de memoria y su valor mas aproximado es 8,8541878176x10-12 C2/Nm2.
G10NL26Alexis

Jóvenes, si observan la Ley de Coulomb expresa la Fuerza eléctrica como una función que depende de: el producto de las cargas eléctricas (naturaleza de la materia), de la inversa de la distancia al cuadrado (geometría) y del medio en que se encuentran inmersas (este se expresa en en modelo o ecuación de Coulomb como la permitividad del medio), Algunas cosas hay que aprenderse de memoria, pero solamente después de haberlas comprendido muy bien, JVV

Problema No 4

Considere una caja triangular cerrada que descansa dentro de un campo electrico horizontal de magnitud E=7.80*10
4 N/C, como se muestra en la figura. Calcule el flujo eléctrico a través de a) la superfice vertical, b) la superficie inclinada, y c) toda la superficie de la caja.
Figure_1.JPG

Solución
a) A=(30.0 cm)(10.0 cm) = 300 cm^2 = 0.0300 m^2
Φ = EAcos Θ = (7.80*10^4 N/C)(0.0300 m^2)(cos 180º) = -2.34 kN*m^2/C

b) A=(30.0 cm)(10.0 cm / cos 60º) = 600 cm^2 = 0.0600 m^2
Φ = EAcos Θ = (7.80*10^4 N/C)(0.0600 m^2)(cos 60º) = 2.34 kN*m^2/C

c) los flujos de las lados y las bases del triangulo son cero ya que el vector de area normal es perpendicular al vector campo electrico.

Φ = -2.34 kN*m^2/C + 2.34 kN*m^2/C + 0 + 0 + 0 = 0

Se puede llegar a la misma respuesta al observar que toda linea de campo electrico que entra a la caja igualmente sale, asi que el flujo electrico neto es nulo.

G11NL25william

william, no entiendo de donde sale el angulo de 180° de la solución a. Espero me pueda responder.

G9NL8Erick

Compañero el angulo de 180 es el formado por el vector de area normal de la cara a y el campo electrico
G10NL24JuanGuillermo



Problema No 5

Seria bueno algo conceptual, responda verdadero o falso : Si la afirmacion es verdadera, explicar por que lo es. Si es falsa dar un contraejemplo, es decir, un ejemplo que contradiga la afirmacion:

1. El campo electrico de una carga puntual tiene un sentido siempre de alejamiento de la carga.
Solución: Es FALSO debido a que señala hacia una carga negativa.

Por definición, el campo eléctrico de una carga puntual siempre apunta alejándose de la carga positiva (es decir, en el mismo sentido que véase la Fig. 6b) pero hacia una carga negativa (es decir, en sentido opuesto a véase la Fig. 6c).

G12NL16diegomartinez y G12NL6nathaliacontrerascompañeros de acuerdo a las dos afirmaciones que nos dan la respuesta es falso o verdadero?
external image moz-screenshot-1.png
cap.png

2. La carga del electron es la menor carga encontrado.
Solución: Es VERDADERO (a excepcion de las cargas que poseen los quarks que son e/3 o 2e/3, aunque no se ha encontrado ningun quark aislado.
3.Las lineas electricas de fuerza nunca divergen desde un punto del espacion.
Solución: La afirmacion es FALSA debido a que divergen desde las cargas puntuales positivas.
4. Si no existe ninguna carga en una region del espacio, el campo electrico debe ser cero en todos los puntos de una superficie que rodea la region citada.
Solución: La afirmacion es FALSA debido a que, el flujo que atraviesa la superficie debe ser cero, pero E no es necesario que sea cero en todas partes.
5.La ley de Gauss es valida solo en el caso de distribuciones de cargas simetricas.
Solución: FALSO; es valido para cualquier distribucion de cargas, pero para hallar E es util unicamente en las distribuciones con simetrias.
6.Si la carga neta sobre un conductor es cero, la densidad de carga debe ser cero en todos los puntos de la superficie. Solución: FALSO, debido a que puede ser positivo en algunas regiones y negativo en otras.

G12NL25Felipe


Problema No 6
En un atómo de hidrogeno el electron y el proton tienen una separacion (en promedio) de 5.3 x 10^ -11m. Encuentre la magnitud de la fuerza electrica y de la fuerza gravitacional que existe entre las dos particulas.

Solución
segun la ley de coulomb, encontramos que la magnitud es:3

=8.2 x 10 -⁸

utilizando la ley de gravitacion universal, encontramos que la magnitud es:

Fg=G Mm/r²=(6.67*〖10〗^(-11) Nm²/Kg²) ((〖9.11*10〗^(-31) Kg)(〖1.67*10〗^(-27) Kg))/(〖(5.3*10〗^(-11) m)²)
=8.6 x 10 -⁴⁷

la relacion Fe / Fg = 2 * 10^9.(aproximadamente) por lo tanto , la fuerza de gravitacional entre particulas atomicas cargadas es despreciable si se le compara con la fuerza electrica.

G10NL23gerardoandres




Problema No 7
Sobre una capa semiesférica de radio R, tenemos una distribución superficial de carga uniforme ρs=1 Cm-2.
1) Calcular la carga total en la capa semiesférica.
2) Calcular el campo eléctrico en el centro O de la figura.

external image ejercicio7.png
Solución
external image solucion71.png
y ahora tenemos que para la solucion 2:
external image solucion72a.png

external image solucion72b.png
G11NL26Ricardo

Problema No 8

Se sabe que una caja cubica contiene una carga neta de 6 μC. El flujo medido por una cara del cubo es 8 x 10 5 Nm2/C. ¿Cual es el flujo total que pasa por las otras cinco caras?


Solución

Primero que todo la ecuacion de Maxwel que relaciona mejor este problema es la ley de Gauss. Esta relaciona el flujo total con la carga interior conocida. Como el dato es el flujo que atraviesa una cara, el que atraviesa las otras cinco es igual al flujo total menos el flujo dado:

Dibujo1.GIF
Aqui se reemplazo la carga del cubo que ya nos la daban y epsilon. Asi el resultado del flujo atraves del cubo es 7 x 105 Nm2/C.Ahora el flujo que pasa atravez de las otras cinco caras restantes es:



Dibujo.GIF
Bien ahora porque el flujo en las otras caras es negativo?. Esto podria ser tal vez porque se hayan interactuando cargas negativas con positivas. Por ejemplo se podria tener una carga de +14 μC y -8 μC o simplemente una de +8 μC y la otra de +6 μC
escanear0001.jpg
G12NL15Javier



Problema No 9

Dos filamentos paralelos de longitud infinita estan en el plano xy separados por una distancia d = 1.0 mm. Cada uno tiene densidad uniforme de carga 1.0 nC/m. ¿Cual es el vector campo electrico en un punto P en el eje Z?


Solución

Primero que todo, el campo electrico en P es la suma de los dos vectores del campo producidos por cada filamento. Cada uno se determina aplicando la ley de Gauss.

En la figura 1 se ve un corte de los filamentos, y los vectores del campo originados por cada uno, asi como sus sumas. Las componentes en x al estar en sentidos opuestos se anulan y las de z se suman.


escanear0002.jpg

FIGURA 1


1 Para comenzar sabemos que el vector resultande E es igual a la suma de los los campos electricos de loslos filamentos.
2 Como los dos filamentos son identicos podemos multiplicar dos veces un vector po el coseno del angulo entre el eje z y los filamentos.
3 Se sustituye 2k por 2πε₀ y se coloca un vector direccional
𝝋
4 En la figura 1 (derecha) nos podemos dar cuenta que el coseno del angulo es igual a d/r. Asi que reemplazamos.
5 Ahora siguiendo la figura 1 (derecha), es posible observar que la distancia en x de los filamentos al punto P (osea r) es de
√( d²+d² /4 )
6 Se resuelve la ecuación y se prosigue a introducir los datos (ecuación 2).



.....................................1.................... 2..................3 ............................4 .....................5.................6

Dibujo2.GIF
Dibujo2.GIF

campo eléctrico G12NL15Javier




problema 10


Ejer_1.PNG

G12NL2diego



Problema 11
Me parecería interesante un problema básico de potenciál eléctrico, les presento el siguiente:

¿Qué diferencia de potencial se necesita para detener un electrón cuya velocidad inicial es de 4.2 x 105 m/s?


Solución:
Primero, se desarrolla la conservación de la energía del electrón, sabemos que en un principio no tendrá energía potencial, que al frenarse tendrá una velocidad final de 0, y que el electrón tiene una masa de 9.11 x 10^5 kg. Entonces tenemos que:


V1.jpg

Luego, se usa la ecuación de potencial eléctrico para hallar la diferencia de potencial necesaria:


V2.jpg

Se infiere que se necesita 0.5 V para detener dicho electrón.


G11NL23Gregory

problema 12

eler_2.PNG

G9NL3andres


problema 13

Parcial_FII.JPG


Problema No. 14

Una carga q1=2.00μC se localiza en el origen y una carga q2=-6.00 μC se encuentra en (0,3.00) m, como se muestra en la figura. Encuentre el potencial eléctrico total debido a estas cargas en el punto P, cuyas coordenadas son (4.00,0) m.


external image ejercicio17jpg.png


Solución
external image ejercicio17.png

G11NL01Julian



problema 15

Problema_1.JPG


Solucion_Problema_1.JPG
G9NL20Carlos

Carlos, este problema del Laplaciano en coordenadas esféricas es elemental en un curso avanzado de electrodinámica.
Si yo lo incluyo en este 1er Examen Parcial Usted tal vez es el primero al que le brotarán lágrimas. Sus compañeros montarán un sindicato y me vetarán.
Este problema se sale del alcance del curso. Sin embargo, pensandolo bien, puede definir el campo eléctrico solo en función de r y explicar de manera simple cómo hacerlo. Sería interesante para sus compañeros, hágale y se ganará unos buenos puntos. JVV


problema 16
Hola!
Me gustan mucho los problemas en los que se involucra más la comprensión del concepto antes que los cálculos, así que les dejo uno que encontré:
(Ley de Coulomb)
5 cargas iguales Q están igualmente espaciadas en un semicírculo de radio R. Determine la fuerza que se ejerce sobre una carga q localizada en el centro del semicírculo:
Dibujo.JPG
Dibujo.JPG

SOLUCIÓN:

Suponiendo que todas las cargas son positivas se tiene que:
  • La fuerza que ejecre Q1 hacia la carga q se anula con la fuerza que ejerce Q5 hacia la carga "q" debido a que ambas tienen igual magnitud pero sentido opuesto.
  • Las componentes en el eje y de las fuerzas que ejercen las cargas Q2 y Q4 hacia "q" se anulan, por la misma razón de arriba.
  • Existe una separación de 45° entre las cargas, de modo que la componente en x de las fuerza que ejerce la carga Q2 sobre q será (|FQ2) cos 45°
  • Como el ángulo que forman Q2 y Q4 con la horizontal es el mismo, se asume que sus componentes horizontales son iguales, de manera que la fuerza total que experimenta la carga q del centro es 2 |FQcos 45° + |FQ = |FQ ( 2 cos 45 + 1)
  • Una vez se ha llegado a esta ecuación, es sencillo reemplazar el valor de la fuerza con la ley de Coulomb, para obtener su magnitud en términos de Q y de R
  • La fuerza resultante será un vector horizontal que apuntará hacia el eje x positivo

G11NL39andrea

Problema 17
Este ejercicio esta en uno de los talleres del grupo 11. Aqui lo presento resuelto:

Cuatro cargas se localizan en las esquinas de un rectángulo como se muestra en la figura. ¿Cuánta energía se necesita para llevar las dos cargas de 4 µC hasta el infinito?





fisik.jpg



Sabemos que la energía necesaria para traer una carga desde el infinito hasta una posición r está dada por la formula:



eq1.jpg


Entonces la energía necesaria para llevarlas al infinito debe ser la misma, por lo tanto hacemos la siguiente fórmula:


eq2.jpg
.

Que nos describe la suma de las energías que producen las cargas respecto a la carga número 3 para llevarla al infinito.
Ya con la carga 3 en el infinito hay que llevar la número 1. La energía necesaria esta descrita por la siguiente fórmula:



eq3.jpg

Ahora por ultimo sumamos ambas energías para saber la energía total para enviarlas a ambas hasta el infinito (la constante k esta factorizada):




eq4.jpg
G11NL37CkayromCkayrom, muy bien por este problema, le recuerdo que debe cambiar su usuario a G11NL42ckayrom, JVV

18. este es un ejercicio q hicimos los del grupo 9, y me parecio interesante



Se proyecta un electrón con una rapidez inicial v0 = 1,60 × 10^6
m/s hacia el interior de un campo eléctrico uniforme entre las placas paralelas de la figura. Suponga que el campo entre las placas es uniforme y su dirección es vertical descendente, y que el campo afuera de las placas es cero. El electrón entra en el campo en un punto equidistante de las dos placas.
a) Si el electrón pasa casi rozando la placa superior al salir del campo, halle la magnitud del campo eléctrico.
b) Suponga que el electrón de la figura se sustituye por un protón con la misma rapidez inicial v0. ¿Golpeara el protón en una de las placas? Si el protón no golpea una de las plazas, ¿cual sería la magnitud de su desplazamiento vertical al salir de la región comprendida entre las placas?
c) Compare las trayectorias recorridas por el electrón y el protón y explique las diferencias.



electron_en_campo_electrico.png
solución:


a) Para conocer el campo eléctrico usare las ecuaciones de newton para hallar la fuerza q ejerce el campo al electrón.

El tiempo q esta electrón en el campo es de 1,25x10-8 s
primera_ecuacion.png
Con el tiempo podemos hallar la aceleración q causa la fuerza en el electro

segunda_ecuacion.png

La aceleración q se obtiene es de 6,4x1013 m/s2

Sabemos q el campo eléctrico se puede definir como la fuerza q ejerce el campo entre la carga de la particula q siente tal fuerza
tercera_ecuacion.png
b) sabiendo el campo eléctrico y aplicando las anteriores ecuaciones se puede hallar la aceleración q toma el proton, y con esta aceleración hallar el desplazamiento de este.
cuarta_ecuacion.png

c) La diferencia debe ser a q la masa del protón es mucho más grande q la del electrón por lo tanto es más difícil hacer mover el protón q el electrón


G9NL12luis


20.
Aunque es un ejercicio sencillo, nos recuerda la importancia de tener en cuenta no solamente las fuerzas de atracción y repulsión de las partículas analizadas en el sistema, sino también otras fuerzas que actúan sobre estas, como el peso, o en este caso la tensión, que nos pueden facilitar el desarrollo del problema

EJERCICIO. Un modelo simplificado de electroscopio consiste en dos pequeñas esferas de masa m cargadas con cargas iguales q y del mismo signo que cuelgan de dos hilos de longitud d, tal como se indica la figura. Calcular la carga q de las bolitas.
SOLUCION
Sobre una bolita actúan tres fuerzas
  • El peso mg
  • La tensión de la cuerda T
  • La fuerza de repulsión eléctrica entre las bolitas F

external image electroscopio1.gif
A partir de la medida del ángulo q que forma una bolita con la vertical, se calcula su carga q.
En el equilibrio
Tsenq =F
Tcosq =mg

Dividiendo la primera ecuación entre la segunda, eliminamos la tensión T y obtenemos
F=mg·tanθ
Midiendo el ángulo θ obtenemos la fuerza de repulsión F entre las dos esferas cargadas
De acuerdo con la ley de Coulomb
Calculamos el valor de la carga q, si se conoce la longitud d del hilo que sostiene las esferas cargadas.
G9NL30Jessica

21.Ejercicio
Una bola cargada de masa 1gr está suspendida de una cuerda ligera en presencia de un campo eléctrico uniforme como se muestra en la figura, Cuando E=(3i+5j)*10^5N/C, la bola esta en equilibrio con un ángulo de 37°.
Determine la carga en la bola y la tensión en la cuerda
diagrama0.JPG


Respuesta.
Determinemos las fuerzas por componentes para hallar
diagrama.JPG

Combinando las dos ecuaciones obtenemos.
diagrama2.JPGdiagrama3.JPG

Para hallar la tensión en la cuerda, usamos de nuevo las sumas de componentes en la fuerza para hallar.
diagrama4.JPG

G10NL17JhonNieto


22.
Un problema propuesto en el tipler sobre potencial debido a un sistema de cargas puntuales:
Cuatro cargas puntuales de 2 microcoulomb se encuentran situadas en los vértices de un cuadrado de 4 m de lado.Calcular el potencial en el centro del cuadrado (tomando como potencial cero el correspondiente al infinito ) si:
(a)Todas las cargas son positivas
(b)Tres de las cargas son positivas y la otra negativa y
(c)dos son positivas y las otras dos son negativas.
SOLUCION:
q1,q2,q3 y q4 indica las cargas de las 4 esquinas y r las distancia. El potencial en el centro del cuadrado esta dado por la suma algebraica de los potenciales debido a las 4 cargas .



sol.png
G10NL24JuanGuillermo





23.Se tienen dos cargas puntuales: q1 = 5 nC en el punto de coordenadas (a, a) y q2 = - 5
nC en el punto de coordenadas (-a, -a) (en metros).

K = 9x 10^9 Nm2/C2
a) Hacer un esquema de las cargas y dibujar el vector campo eléctrico en los puntos
de coordenadas (-a, a) y (a, -a).
b) Sabiendo que en el punto (-a, a) una carga q0 = 4 nC experimenta una fuerza dada
por F = - 5x10^-9 i - 5x10^-9 j (N), determinar el valor de a. Calcular el potencial eléctrico
en el punto (0, 0) y en el (0, 5).
c) Calcular el potencial creado por q1 y q2 en los puntos (0, 0) y (a, 0), tomando como
valor de a el calculado en el apartado anterior.
a)

a.jpg


b)b.jpg
b.jpg
c)
c.jpg

G12NL33Julian



24.
Un disco de radio 5 cm, es portador de una densidad de carga superficial uniforme de 4 μC/m2. Utilizando aproximaciones razonables, determinar el campo eléctrico sobre el eje del disco a distancias:
a) 0.01 cm
b) 0.03 cm
c) 6 m
d) 6 cm
Solución
a) 0.01 cm es mucho menor que el radio del disco, se puede aproximar a un punto infinito de carga, entonces:
Ex= 2πkσ
= 2π(8.99*109Nm2/C2)(4*10-6C/m2)
= 226kN/C

b) Igualmente para b, ya que sigue siendo 0.03 sigue siendo mucho menor.

c) 6 m es una distancia mucho mayor que el radio del disco y se puede considerar como una carga puntual, por lo tanto:

Q= σπr2
= (4*10-6C/m2) π(0.05m)2
= 31.4*10-6C

Ex= = = 7.84 N/C




d) 6 cm es del mismo orden de magnitud que el radio, entonces:

Ex= 2πkσ

= (226kN/C)( = 52.4 kN/C

G10NL07Maryeny


25.Hola a todos yo quiero proponer un ejercicio algo diferente a los que he visto hasta ahora :

Por una sección de un conductor circulan 2.000 C en un minuto 40 segundos. Determine la intensidad de corriente en el conductor, que cantidad de electrones pasarian por el conductor? cual seria la masa total de estos ? cual seria la diferencia de potencial necesaria para mantener la intensidad de corriente si pasa por una resistencia de 15
Ω?

primero que todo hay que recordar que
2.000≠2,000
ya que aunque muchos de ustedes ya lo saben vale la pena recalcar que el punto se utiliza en mile y la coma en decimales. entonces electrici_ecua.JPG
Gracias

G12NL20camilo-26. trace de forma esquematica las lineas de fuerza asociadas a un par de cargas puntuales 2q y -q, separadas por una distancia d. Explique el trazado y discuta cualitativamente el comportamiento de las lineas en puntos próximos y distantes de las cargas en diferentes regiones.SOLUCION: 1- De una carga positiva salen las lineas de campo electrico y en la negativa entran.2- Ningún par de lineas pueden cruzarse.3- El número de lineas que salen de la carga positiva a la negativa, es proporcional a la magnitud de las cargas, en este caso de las lineas que salen de +2q, solo la mitad llegan a -q, las restantes lineas se dirigen a cargas negativas más distantes.G11NL5_fabianbuitrago-27. Un protón es acelerado desde el reposo a traves de un potencial V=2.5*10^5 V. ¿Cuál es su rapidez final?SOLUCIONU=q*VSabemos que la carga del proton es 1.6*10^(-9) C, y que la masa del proton es 1.66*10^(-31) Kg, entoncesU=1.6*10^(-9) C * 2.5*10^5 VU= 4*10^(-14) J.Por ley de conservacion de la energia tenemos que Uo=E cinetica finalentonces(1/2)mv^2=4*10^(-14) Jv¬2=2(4*10^(-14) J)/1.66*10^(-31) Kgentonces la rapidez final del proton esv=6.94*10^6 m/sG11NL5_fabianbuitrago

Problema No. 28:

Una esfera sólida de 40 cm. de radio tiene una carga positiva total de 26 distribuida unifromemente por todo su volumen. Calcule la magnitud del campo elérctico en a) o cm, b) 10 cm, c) 40 cm y d) 60 cm del centro de la esfera.


Solución:


Usaremos dos expresiones en este caso que nos da la ley de Gauss...

  • Cuando el radio de nuestra superficie gausseana es menor al de la esfera r<=A tenemos que E = (kQ/A^3)r que usamos para el punto a) y b).
  • Ahora, si buscamos el campo eléctrico fuera de la esfera, la expresión en ese caso será: E = (kQ/r^2) que usamos en c) y d).

De esta forma tenemos que:

solprob2.JPG

G10NL11andres.



Problema No. 29:


Una esfera aislante sólida de radio a tiene un densidad de carga uniforme
ρ y una carga total Q. Concéntrica con ella está una esfera hueca conductora descargada cuyos radios interior y exterior son b y c, como se muestra en la figura.
problema.JPG

  • Determine la magnitud del campo eléctrico en las regiones r<a, a<r<b, b<r<c y r>c.


Solución:

[[image:file/view/solproblema2.JPG]]solproblema.JPG

G10NL11andres.



-_
Problema No. 30
fisica.JPG























G11NL5_fabianbuitrago y G11NL24wendy



ESTA PÁGINA CONTINUA EN 1er Examen Parcial II



- La función intelectual de las dificultades es la de conducir a las personas a pensar, John Dewey -